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A novel approximate solution has been devised for predicting the thermal entry length 
in duct flows for situations of either isothermal or isoflux walls and fully developed velocity 
distribution. The conventional partial differential energy equation does not need to be 
solved in the region of thermal development of the duct. This is a unique feature of the 
proposed solution, which has not been fully discussed in the literature before. Computed 
values of the thermal entry length for circular pipes and parallel plates are in good 
agreement with results obtained by more elaborate traditional techniques. These are the 
geometries most commonly used in fluid flow and heat transfer devices. 
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I n t r o d u c t i o n  

A reliable estimate of the magnitude of the thermal entry length 
in internal forced convection problems is very important to the 
heat-exchanger design engineer. This quantity establishes the 
borderline wherein heat transfer rates become dependent on or 
independent of the axial position of the duct. Beyond this point 
and under the idealization of laminar motion, the convective 
heat transfer coefficient depends on the fluid's thermal con- 
ductivity and the hydraulic diameter of the duct exclusively 
and is invariant with the axial coordinate. 

The thermal entry length is traditionally defined as the duct 
length required to achieve a local value of Nux equal to 
1.05 times the asymptotic value of the corresponding Nusselt 
number, Nuoo, for a certain thermal boundary condition 
specified at the wall. 1 To arrive at this numerical value, the 
conventional procedure necessitates knowledge of the temper- 
ature field in the entire thermal entrance of the duct, obtained 
by solving the appropriate energy equation using analytical or 
numerical procedures. This information is converted into a local 
Nusselt number distribution, and the magnitude of the thermal 
entry length is eventually computed following the above- 
mentioned guidelines. 

Conversely, Sandall and Hanna 2 devised a different approxi- 
mate method to determine the thermal entry length for laminar 
flow through ducts exposed to uniform wall heat flux. Based 
on an overall energy balance between two consecutive cross 
sections of the duct, they derived an approximate value of Lth ,®. 
Comparison with the rigorous computation of Lth,® reported 
in Ref. 1 reveals that their expressions provide lower bounds for 
the exact value of Lth.®. Computed errors are of the order 
of 15% and 33% for circular pipes and parallel plate channels, 
respectively. One drawback of the procedure developed in Ref. 2 
is that its validity is restricted to an a priori knowledge of the 
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total wall heat flow passing to the fluid stream. Accordingly, the 
applicability of the method in Ref. 2 for practical problems is 
limited exclusively to situations involving an a priori knowledge 
of the wall heat fluxes. 

On the other hand, although the development presented in 
Ref. 2 applied to a uniform heat flux boundary condition in a 
strict sense, Hanna et al. explored the possibility of extending 
their approximate approach for the case of uniform wall temper- 
ature. 3 Accordingly, they stated that the essential difficulty with 
this thermal boundary condition is that the unknown surface 
heat flux, which varies with distance, is required for the analysis. 
In this regard, they estimated the magnitude of this heat flux 
by invoking a L6vSque-type solution with the understanding 
that it does not apply accurately over the whole thermal 
entrance region of the duct. In spite of this severe limitation, 
they proceeded with the original idea and their calculations 
supplied Lt~.®=0.0414 for circular pipes. Of course, these 
values underpredicted the exact results of Shah, 4 having associ- 
ated errors of 38%. It should be noted that for case (D, Hanna 
et al. 3 did not report results for the parallel plate geometrical 
configuration. 

In a section devoted to areas of future research in Ref. 1, 
Shah and London recommended that improvements of the 
method proposed by Sandall and Hanna 2 be made without 
solving the complete entrance length problem. In addition, Shah 
and London suggested that the improved methodology be able 
to accommodate other thermal boundary conditions as well, 
characterizing a wide variety of heat exchange processes at the 
duct wall. In view ofthese arguments, we focused on a simplified 
approach to calculating the thermal entry length in duct flows, 
when subjected to any type of thermal boundary condition, 
without solving the complete entrance length problem. This 
approach is based on a combined analytical/numerical pro- 
cedure that couples the classical method of separation of 
variables and the transversal method of lines. An extensive 
review of the latter was reported by Rothe. 5 The salient feature 
of the procedure is that the temperature profile at any axial 
station T(x ,  ~) in a duct can be calculated directly by solving 
a single ordinary differential equation (an equivalent energy 
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equation) at a preselected downstream position in the duct, 
instead of solving the complete partial differential equation (the 
energy equation), in the region of thermal development. Conse- 
quently, this ordinary differential equation, which incorporates 
the size of the axial station, emerges as a by-product of 
the proposed hybrid methodology identified by SETMOL 
(separation of variables/transversal method of lines). From here, 
calculation of the transverse temperature profile T(0  at any 
axial station is easily carried out numerically, and computation 
of the corresponding local Nusselt number is straightforward. 
Furthermore, specifying the calculated local Nusselt numbers 
at two or three distinct axial stations selected a priori allows 
a simple graphic interpolation to supply the approximate 
magnitude of the thermal entry length Lth. Two sample calcu- 
lations for the limiting conditions of uniform wall temper- 
ature ~ and uniform wall heat flux ® in circular pipes and 
parallel plate channels are included in this article to illustrate 
the simplicity of the proposed hybrid methodology. 

Finally, it should be emphasized that this hybrid procedure 
is capable of handling any thermal boundary condition (linear). 
Additionally, work is underway to extend this procedure to 
ducts having any kind of irregular cross sections, which are 
commonly used in compact heat exchangers and nuclear 
reactors. Preliminary results are very encouraging. 

Mathemat ica l  t r e a t m e n t  

Under the assumption of fully developed velocity, the analysis 
will be presented for two cases: uniform wall temperature 
and uniform wall heat flux ®. 

Uniform wal l  temperature ~)  

The dimensionless transverse temperature in a duct is governed 
by the ordinary differential equation 

, , ic,O  ,(;:) 
, :d~\~  d ,U=~x  UOlnlOI (1) 
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where 0(r/) designates the temperature variation at a distance 
AX from the origin. Step-by-step details of this derivation 
appear in Appendix A. Furthermore, Equation 1 is subject to 
the boundary conditions 

dO 
- - = 0 ,  ,~=0 (2) 
dr/ 

and 

0=0,  r/= 1 (3) 

Uniform wal l  heat f lux 

The conventionally adopted superposition principle allows us 
to write the dimensionless temperature field in two parts, 
namely, 

O = (p-~ Ofd 

where 

(4) 

(~fd = 4 X  d_ t]2 r] 4 14  
4 48 (5) 

designates the fully developed temperature profile for a circular 
tube and 

O f d = 4 X +  34 ?/2 /74 39 
8 280 (6) 

is the corresponding fully developed temperature profile for a 
parallel plate channel. Hence the developing temperature profile 
in the transverse direction ¢p(r/) at a distance AX from the origin 
is characterized by the ordinary differential equation 

1 d f cdtp'~ 1 {L¢'~Uq, lnflq~l'~l--I 
,l< a,7 !t 'l ~ , ) : ~ t ~ )  \lOol) 

(7) 

where by virtue of the boundary condition at the entrance X = 0, 

Oo= -Ofa(0,  t/) (8) 

Again, this derivation is explained in Appendix A. 

Notat ion  

c Geometric parameter (c= 1 for pipes; c = 0  for 
parallel plates) 

D Pipe diameter 
Dh Hydraulic diameter (Dh=D for pipes; Dh=4L for 

parallel plates) 
h Convection coefficient 
k Thermal conductivity 
L Half-spacing of parallel plates 
L¢ Characteristic length (Lc=R for pipes; L¢=L for 

parallel plates) 
Lth Thermal entry length 
Lt% Dimensionless thermal entry length, Lt~/LePe 
Nu m Mean Nusselt number, hmD~/k 
Nux Local Nusselt number, hxDffk 
Nuoo Asymptotic Nusselt number 
Pe Peclet number, UmDh/~ 
qw Wall heat flux 
r Transverse coordinate for pipes 
R Pipe radius 
T Temperature 
u Fully developed velocity 
U Dimensionless velocity, u/um 
x Axial coordinate 

X 
Y 

Dimensionless axial coordinate, x/LePe 
Transverse coordinate for parallel plates 

Greek 
~t 

AX 

0 

0 

~p 

letters 
Thermal diffusivity 
Axial station 
Generalized transverse coordinate ( (=  r for pipes; 
( =  y for parallel plates) 
Dimensionless value of (, (/L c 
Dimensionless temperature for case ~ ,  
( r -  T,.)/(T e - T,,,) 
Dimensionless temperature for case ®, 
k ( T -  T,)/qwL c 
Dimensionless temperature for case ®, Equation 4 
Generalized dimensionless temperature, Equation 11 

Subscripts 
b 
e 
fd 
® 
m 
® 
W 

X 

Mean bulk 
Inlet 
Fully developed 
Refers to unilorm wall heat flux 
Mean 
Refers to uniform wall temperature 
Wall 
Local value 
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In addition, by invoking Equation 4, we may write the 
boundary conditions associated with Equation 7 as 

dtP=0, r/=0 (9) 
dr/ 

and 

d~:o, r/=l (lO) 
dr/ 

respectively. 
Note that Equations 1-3 and 7-10 constitute a boundary 

value problem, and its solution does not require a marching 
technique. Consequently, the transverse temperature profiles 
may be readily computed at any axial station AX by solving 
the corresponding system of algebraic equations at each AX. 

Conversely, knowledge of the fluid's temperature profile is 
the only necessary ingredient for the calculation of the mean 
bulk temperature ~bb(AX) at any axial station AX: 

t~b:4(~)f/U@r/Cd~l (11) 

where ~k designates a generalized temperature; ~k=0 for case 
0), and ~k = (9 for case @, respectively. 

As stated in the Introduction, the magnitude of the thermal 
entry length is influenced by the asymptotic values of the local 
Nusselt number Nuo~ in the downstream region of the duct. 
Accordingly, these local Nusselt numbers for cases (~ and 
® are expressed by 

and 

1 
Nu x -  (13) (k),Ow 
respectively. This information leads to the direct calculation of 
the thermal entry length Lth, which is somewhat arbitrarily 
defined in Ref. 1 as the duct length wherein Nux = 1.05 Nu®. 
Additionally, the mean Nusselt number for case (~  is given 
by the relation 

1 

N u , , - 4 X ( D ~ )  l n ( ~ )  (14) 

Numerical procedure 

Since the source term in Equations 1 and 7 depends on both 
position and temperature, standard analytical methods do not 
exist, and a numerical approach capable of handling nonlinear 
terms is mandatory. Correspondingly, the most elementary of 
these approaches involves the solution of a system of linear 
algebraic equations by the Gauss-Seidel technique and updating 
the nonlinear source term between two consecutive iterations. 

However, in this article results have been obtained by 
employing a readily available subroutine, based on a finite- 
difference procedure called PASVA3, developed by Pereyra. 6 
In this method, each transformed ordinary differential equation, 
i.e., Equations 1 and 7, are rewritten in finite differences at 

certain preselected stations AX (see Figure 1). The resulting 
systems of nonlinear algebraic equations are solved iteratively 
until convergence is achieved. For these particular problems, 
the nodal points are clustered closer to the duct wall in order 
to resolve the larger temperature gradients that occur near it. 
The grid point distribution is carefully tailored to yield transverse 
temperature profiles that are grid-independent at any axial 
station AX in the downstream region of the duct. 

Results and discussion 

In the present study, quantitative information on the thermal 
entry length has been obtained for two limiting cases within the 
framework of thermal boundary conditions, namely, ~ and 
®. Typical results are given below for two geometrically extreme 
cases: circular pipe and parallel plate channel. 

Circular p ipe 

Case ®. By solving Equation 7 at three different stations, 
e.g., AX=0.04, 0.06, and 0.1, we can readily determine the 
corresponding radial temperature profiles ®(r/) and the local 
Nusselt numbers Nu x. This information may be plotted on 
semilog paper, as illustrated in Figure 2. Graphic interpolation 
between these three points reveals that the approximate thermal 
entry length L*,® is 0.0868. Judging from the crude analysis 
based on SETMOL proposed here, this quantity compares 
extremely well with the benchmark solution for the entire 
thermal entrance length problem reported in Shah, 4 wherein 
L*,®=0.0861. If more accurate results are necessary, an 
improved estimate of L*,® may be obtained for interpolation 
purposes by reducing the intervals of AX to subintervals in the 
neighborhood of X =0.0868, as shown in the inset of Figure 2 
(see Appendix B). Furthermore, the estimate of L*,® provided 
by Sandall and Hanna 2 was 0.0730. 

Case ®. For this thermal boundary condition, implementa- 
tion of the procedure explained for case ® is a bit more 
elaborate. Basically, this is due to the fact that the wall 
temperature gradient (dO/dr/)w, which is directly proportional to 
Nux, is not a fixed quantity as it was in case ®, and therefore 
needs to be calculated. Correspondingly, it has been clearly 
stated that the adopted hybrid methodology SETMOL provides 
an approximate temperature profile at any downstream axial 
station. Consequently, minor temperature deviations usually 
yield significant errors when the important quantity--the local 
wall temperature gradient--needs to be computed accurately. 

An alternative route that circumvents this inherent difficulty 
will be developed in this section. Accordingly, the descriptive 
ordinary differential equation, Equation 1, must be solved at 
a minimum of two axial stations. Next, the mean Nusselt 
number Nu m at each of the participating stations may be 
obtained from Equation 14. 
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Additionally, equating Equations 15b and 17 yields 

Nux _ e = X  b (18) 
l + b  

Inspection of Equation 18 reveals a power-law type of variation 
for the distribution of the local Nusselt number Nux. Hence, 
invoking the criterion for the thermal entry length (Ref. 1) and 
consequently replacing X by Lt~,~ and Nu x by 1.05Nu= in 
Equation 18, respectively, leads to the compact expression 

[-1.05Nuoo] l/b 
(19)  

An interesting feature of the adopted methodology as applied 
to case ~ is that Equation 19 allows for a direct calculation 
of L*®. The reason is that Nu® is a known quantity, and a 
and b are just constants corresponding to the intercept and the 
slope of the Num curve, respectively, i.e., Equation 15a. 

A sample calculation will be discussed briefly. Figure 3 shows 
the linear log-log variation of Num versus X .  This plot results 
from the evaluation of Equation 15a based on the computation 
of the temperature profiles at three distinct stations: X=0.04, 
0.05, and 0.06. The constants a = 0.9377 and b = -0.2602 are 
readily determined graphically or, more accurately, by imple- 
menting a least squares curve-fitting technique. Introducing 
these numbers, along with Nu~,®=3.6568, into Equation 19 
gives L*,®= 0.06554. Meanwhile, the analytically determined 
value reported by Shah is L*®=0.06693. Figure 4 further 
illustrates the variation of Nux as calculated from Equation 18. 
Conventional interpolation confirms the value of L*,® as 
0.0655. There appears to be good qualitative agreement between 
this approximate solution and Shah's exact solution. It should 
also be mentioned that the computed value of L*.®, using the 
Lrv~que solution reported in Ref. 3, was 0.0414. 

Parallel plate channel  

Case  ®.  As with the circular duct, upon solving Equation 7 
at three different stations, e.g. AX=0.02, 0.04, and 0.08, the 
corresponding transverse temperature profiles O(r/) and the 
associated local Nusselt numbers Nux are readily determined. 
Next, this information is plotted on semilog paper, as illustrated 
in Figure 5. Graphic interpolation between these three points 
clearly reveals that the approximate value of the thermal entry 

obtained from Equation 14. 
On the other hand, exploiting the linear behavior of log Num 

versus log X, we may write 

In Num=a+b  In X (15a) 

which, in turn, becomes 

N u m = e = X  b (15b) 

Alternatively, by definition, the relationship between Nu x 
and NUm may be expressed as follows: 

Nux =Num + X ( ~ )  (16) 

Furthermore, inserting Equation 15b into Equation 16 results 
in the relation 

Nu x 
NUm- (17) 

l + b  
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length L'h, ® is 0.0464. Therefore, as m the circular pipe, this 
quantity compares extremely well with Shah's benchmark 
solution 4 of the entire thermal entrance problem, wherein 
Lt~.®=0.0462. As mentioned before, more accurate results 
may be obtained by reducing the intervals of AX to subintervals 
in the neighborhood of X=0.0464, as shown in the inset of 
Figure 5 (see Appendix B). On the other hand, the procedure 
developed in Ref. 2 yielded a value of L*.®=0.0348. 

Case  (~. By repeating the step-by-step procedure employed 
for the circular duct configuration, the temperature profiles are 
computed at three stations, i.e., X =0.02, 0.025, and 0.03, and 
Num is evaluated. Figure 6 shows the local linear variation of 
log Nu,, with log X. Based on this variation, the numerical 
values of a and b may be readily computed; i.e., a = 1.5037 and 
b = - 0.2462, respectively. 

Moreover, introducing a and b, along with Nu~,®=7.541 
into Equation 19 gives L*.®=0.0319. This quantity agrees 
well with the analytically determined value of L* ®=0.0319 
reported by Shah. For  completeness, Figure 7 depicts the 
variation of Nux, as calculated from Equation 18. 

C o n c l u s i o n s  

This paper is concerned with an approximate calculation of the 
thermal entry length in laminar forced convection flows through 
regular ducts without solving the governing energy equation. 
The solution methodology, based on the method of separation 
of variables and the transversal method of lines (SETMOL), is 
especially useful for practitioners in heat exchanger applications. 
Step-by-step calculations were demonstrated for two limiting 
thermal boundary conditions, (~ and ®, in conjunction with 
two extreme geometric configurations (circular pipe and parallel 
plate channel). It was found that in all cases the computed 
thermal entry lengths were within 2% of the corresponding 
lengths obtained from benchmark analytical solutions reported 
by Shah. 4 His work corresponds to the complete solution of 
the thermal entrance problem. Conversely, the predictions 
reported in Refs. 2 and 3 were found to be less accurate than 
those of the present investigation. 

The excellence of these predictions establishes the present 
methodology as a viable tool for computing the thermal entry 
length in duct flow heat transfer problems. Work is currently 
underway to extend this theory for predicting the thermal entry 
length of ducts of irregular cross sections normally used in 
compact heat exchangers. 
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A p p e n d i x  A 

Mathematical  derivation o f  eq. (1) 

In terms of a generalized variable A, the applicable energy 
equation in dimensionless form is given by 

where c designates a geometric parameter. 
Invoking the method of separation of variables allows 

assumptions of a series solution of Equation A-1 as follows: 

A =  ~ a,Z,tX)Y~(rl) (A-2) 
i = 0  

where Zi are functions of X only, Yi are functions of r/only, 
and a~ are coefficients. 

Combining Equations A-1 and A-2 yields 

L c ,-] 

;=0 LkD./  

Because the coefficients ai are arbitrary, Equation A-3 is 
satisfied when the terms in brackets are 

UZ;Y~- Z,Y;'-- I * Z,Y;=O (A-4) 

Next, separating variables in Equation A-4 results in the 
following set of ordinary differential equations: 

z ;  + ,~,~ z,  = o (A-5) 

y;, +c q y; + 2~(~h)UY~=O (A-6) 

where )0i are the corresponding eigenvalues. Now, multiplying 
Equations A-5 and A-6 by Y~ and Z~, respectively, and performing 
the summation on the i index, gives 

d A _  a,22Z, Y~ (A-7) 
c~X ~=o 

and 

O2A c c~A f L c \  oo 
+ . . . .  [ - - ] U  ~ ai22ZiY~ (A-8) 

C3r/2 r/ dr/ k.Ohf i=0 

At this stage, a function ~[2(X, ;7) is defined by 

22 = 12(X ' r/) = ;= o (A-9) 

~ aiZiYi 
i = 0  

From a conceptual point of view, this function may be 
interpreted as a weighted average value of the squares of the 
eigenvalues 2v 

Next, introducing this definition into Equations A-7 and A-8 
leads to the system 

0A 
-- ~2A (A-10) 

OX 
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and 

+n~n= - U~2A (A-I I) 

Despite the fact that ~[2= ~2(X ' t/) appears in the preceding 
equations, its actual use for the computation of A at X =  AX 
requires that we realize that ~2=~2(AX, r/). In other words, ~2 
becomes a function of r/only, because it has been evaluated at 
a fixed axial station AX. Therefore we may safely assume that 
~2 is an independent function of X. Hence, carrying out the 
integration of Equation A-10 results in 

A = Co (0)e- ~x (A- 12a) 

where COO/) may be evaluated from the boundary condition at 
X = 0, namely, 

A o-- A(X = 0) = Co(q) (A-12b) 

Then we can write ~2 explicitly as a function of A: 

~ 2 = - X - X l n ( I A I ' )  (A-13) 
\[mol/ 

Conversely, we may now turn our attention to Equation 
A-11. Introducing Equation A-13 into Equation A-11 gives 

02A ~_c ~A_ (_Lc'~U ln (  IAI "~A=0 (A-14) 
d~l 2 q Oq \Dh,/ X \lAol/ 

Then let AX designate an interval between the entrance X = 0 
and any axial station X = X placed in the downstream portion 
of the channel (see Figure 1). Therefore, by virtue of the 
transversal method of lines, 5 Equation A-14 becomes 

d:A cdA /'L='~ U ,  [ IAI '~ ,  , 
F -  - - - - / - - - / - -  l n l - - / / x  = o  (A-15) 

dq 2 r/dr/ \ D , /  AX \JAol/ 
Mathematically, Equation A-15 constitutes a transformed 
equation of energy conservation, where A(r/) designates a radial 
profile at any particular station, AX, in the downstream region 
of thermal development in the channel. Thus, Equation A-15 
indeed constitutes a two-point boundary value problem given 
by a nonlinear ordinary differential equation that results from 
the combination of the method of separation of variables and 
the transversal method of lines (SETMOL). 

Appendix B 
Possible improvement  

Once the approximate value of L* is determined for any 
geometry and any thermal boundary condition, a refined 
estimate of it may be obtained as follows. The necessary number 
of axial stations for each case tested may be assigned in the 
neighborhood of the first estimate of Lt~, and the process is 
repeated in an appropriate set of subintervals of the axial 
dimensionless coordinate X. This step-by-step process is repeated 
until good convergence is achieved. 
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